
Comprehensive factorisation systems

Clemens Berger1 and Ralph M. Kaufmann2

1Université de Nice, Lab. J. A. Dieudonné, Parc Valrose, 06108 Nice Cedex, France
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Abstract

We establish a correspondence between consistent comprehension schemes and complete or-
thogonal factorisation systems. The comprehensive factorisation of a functor between small
categories arises in this way. Similar factorisation systems exist for the categories of topological
spaces, simplicial sets, small multicategories and Feynman categories. In each case compre-
hensive factorisation induces a natural notion of universal covering, leading to a Galois-type
definition of fundamental group for based objects of the category.
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Introduction

The main purpose of this text is to promote a somewhat unusual point of view on orthogonal
factorisation systems, based on a minor variation of Lawvere’s notion of comprehension scheme
[26]. A comprehension scheme P on a category E assigns to each object A of E a category PA with
terminal object ?PA, and to each morphism f : A → B of E an adjunction f! : PA � PB : f∗

satisfying certain axioms. These axioms imply the existence of a full subcategory CovB of the
slice category E/B consisting of so called P -coverings, together with an equivalence of categories
CovB ' PB. A morphism f : A→ B is called P -connected if f!(?PA) ∼= ?PB .

Our main result reads as follows (cf. Theorems 1.7 and 1.8):

Theorem 0.1. Every consistent comprehension scheme P on E induces a complete orthogonal fac-
torisation system on E with left part consisting of P -connected morphisms and right part consisting
of P -coverings.

Conversely, every complete orthogonal factorisation system on E arises in this way from an
essentially unique consistent comprehension scheme on E .

A comprehension scheme is consistent precisely when P -coverings compose and are left can-
cellable, cf. Proposition 1.5. A factorisation system (L,R) (cf. Freyd-Kelly [11]) is complete if
pullbacks of R-morphisms exist along any morphism of E . We show that under this correspondence
the comprehension scheme P satisfies Frobenius reciprocity in the sense of Lawvere [26] if and only
if P -connected morphisms are stable under pullback along P -coverings.

Street and Walters’ comprehensive factorisation of a functor [33] into an initial functor followed
by a discrete opfibration arises in this way from the comprehension scheme which assigns to a
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category A the category SetA of set-valued diagrams. Dually, the comprehension scheme assigning
to a category A the category SetA

op

of set-valued presheaves induces the factorisation into a final
functor followed by a discrete fibration. In both cases, the axioms of a comprehension scheme
amount to the existence of the category of elements for any set-valued diagram, resp. presheaf. It
was Lawvere’s insight [26] that the existence of these discrete Grothendieck constructions is encoded
by the existence of a certain adjunction.

One of the leading motivations of this text has been the recent construction by the second au-
thor and Lucas [23] of decorated Feynman categories, which play the role of Feynman categories
of elements. A Feynman category is a special kind of symmetric monoidal category, and there
is a comprehension scheme assigning to a Feynman category F the category of strong symmetric
monoidal set-valued functors on F. The resulting comprehensive factorisation of a Feynman functor
sheds light on Markl’s recent definition of non-Σ-modular operads [27]. Through the 2-equivalence
between Feynman categories and small multicategories (also called coloured operads) we obtain a
comprehensive factorisation of a multifunctor which directly extends Street and Walters’ compre-
hensive factorisation of a functor.

Another instructive example is the comprehension scheme which assigns to a well-behaved topo-
logical space A the category Shloc(A) of locally constant set-valued sheaves on A. The resulting
comprehensive factorisation factors a continuous map into a map with connected homotopy fibres
followed by a topological covering. The category of simplicial sets carries a similar comprehension
scheme. The induced simplicial coverings are precisely the Kan fibrations with discrete fibres.

The last two examples suggest that categories E admitting a “discrete” comprehension scheme P
(i.e. such that the value of P at a terminal object ?E of E is the category of sets) can be investigated
from a Galois-theoretical perspective. We undertake first steps in this direction. We define discrete,
connected and locally connected objects using the comprehensive factorisation. Moreover, any based
object α : ?E → A admits a universal P -covering Uα → A, obtained by comprehensive factorisation
of α. The group of deck transformations of this universal covering is a natural candidate for the
fundamental group π1(A,α). We explore this definition in the aforementioned cases and show that
a faithful fibre functor α∗ : PA → Set factors through the category of π1(A,α)-sets whenever the
comprehension scheme satisfies Frobenius reciprocity. We give a sufficient condition for monadicity
of fibre functors, closely related to Grothendieck’s axiomatisation of Galois theory [16].

This article is organised as follows:

Section 1 establishes the correspondence between consistent comprehension schemes and com-
plete orthogonal factorisation systems. We discuss Frobenius reciprocity and define restriction and
extension of comprehension schemes.

Section 2 investigates the standard comprehension scheme for Feynman categories and small
multicategories, with an application to modular operads.

Section 3 studies Galois-theoretical aspects of categories with discrete comprehension scheme.
We define natural π0- and π1-functors and investigate fibre functors and their monadicity.

1 Comprehension schemes and factorisation systems

By comprehension scheme on a category E we mean a pseudo-functor P : E → Adj∗ assigning to
each object A of E a category PA with distinguished terminal object ?PA, and to each morphism
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f : A→ B an adjuntion f! : PA� PB : f∗ such that Lawvere’s comprehension functor

cB : E/B // PB

(f : A→ B) � // f!(?PA)

has a fully faithful right adjoint pB : PB → E/B.
Note that the functoriality of cB follows from the existence of unique morphisms f!(?PA)→ ?PA′

in PA′ for each A→ A′ in E .
The unit of the (cB , pB)-adjunction at f : A→ B yields a factorisation

A
ηf//

f

��

elB(cB(f))

pBcB(f)
zz

B

(1.1)

and we say that f : A→ B is a P -covering if ηf is invertible. A morphism f : A→ B of E is said
to be P -connected if f!(?PA) ∼= ?PB .

The full subcategory of E/B spanned by the P -coverings will be denoted CovB . In particular,
we have an equivalence of categories CovB ' PB for each object B. The comprehension scheme is
said to be consistent if each P -covering f : A → B induces an equivalence of categories f! : PA '
PB/f!(?PA).

Let us mention here that what we call a comprehension scheme on E is precisely what Jacobs
[19, Example 4.18] calls a full Lawvere category over E showing that this notion is a special case of
Ehrhard’s D-categories [9] which are renamed comprehensive categories with unit. It is noticeable
that a certain amount of our results (such as Lemma 1.1) carry over to the more general context of
comprehension categories with unit where the existence of left adjoint functors f! is not required.

Lemma 1.1 (cf. [20], Lemma 10.4.9(i)). The existence of a right adjoint pB : PB → E/B of
cB amounts to the existence (for each object X of PB) of an object of elements elB(X) over B
having the universal property that for each h : A→ B in E there is a bijection between morphisms
?PA → h∗(X) in PA and liftings in E

elB(X)

pB(X)

��
A

h
//

;;

B

which is natural with respect to morphisms X → Y in PB.

Proof. Morphisms ?PA → h∗(X) are in one-to-one correspondence with morphisms cB(h) =
h!(?PA) → X so that the condition above expresses that the latter correspond to morphisms
h→ pB(X) in E/B. Naturality in one variable suffices. q.e.d.

Lemma 1.2. A comprehension scheme P on E is consistent precisely when for each B in E and
each X in PB, the map P elB(X)→ PB/cBpB(X)→ PB/X is an equivalence of categories.
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258 C. Berger, R. M. Kaufmann

Proof. Since pB(X) : elB(X)→ B is a P -covering, and up to isomorphism over B any P -covering
is of this form, consistency amounts to the condition that pB(X)! : P elB(X) ' PB/cBpB(X) is an
equivalence of categories. By definition of a comprehension scheme, the counit εX : cBpB(X)→ X
is always an isomorphism, and hence the second map above is always an equivalence of categories.

q.e.d.

1.3. Category of elements. The special case where E = Cat is the category of small categories
serves as guideline throughout. We have two comprehension schemes here, given respectively by
PA = SetA and P ′A = SetA

op

. In both cases, the right adjoint is restriction and the left adjoint is
given by left Kan extension.

The universal property of elB(X), as stated in Lemma 1.1, is satisfied by the comma category
? ↓ X where ? denotes a singleton functor on the terminal category, cf. Street-Walters [33]. This
comma category is often called the category of elements of X. It is a special case of the Grothendieck
construction of a functor. In the covariant case, the objects of elB(X) are pairs (b ∈ B, x ∈ X(b))
and the morphisms (b, x)→ (b′, x′) are those ϕ : b→ b′ in B for which equality X(ϕ)(x) = x′ holds.
In the contravariant case, one has to dualise twice in order to get pB(X) : elB(X)→ B.

For each category B and each X ∈ SetB , the counit cB(pB(X))→ X is invertible (i.e. the right
adjoint pB : SetB → Cat/B is fully faithful) because any functorX : B → Set may be identified with
the left Kan extension of the singleton functor ? : elB(X)→ Set along the projection elB(X)→ B,
cf. [33, Proposition 1].

The comprehension schemes P, P ′ are consistent, cf. Lemma 1.2. It suffices to consider the
functor pB(X) : elB(X) → B defined by a diagram X : B → Set (resp. presheaf X : Bop → Set).

It can be checked by hand that the induced functor SetelB(X) → SetB/X (resp. SetelB(X)op →
SetB

op

/X) is an equivalence.
P -coverings are precisely discrete opfibrations, and P ′-coverings precisely discrete fibrations.

These two classes of functors compose and are left cancellable so that Proposition 1.5 below is an
alternative way to extablish consistency.

1.4. Powerset comprehension scheme. Another example, certainly motivating Lawvere [26], is
the powerset functor P : Set→ Adj∗ assigning to a set A its powerset PA, considered as a category
via its poset structure. The adjunction f! : PA � PB : f∗ is given by direct/inverse image. The
comprehension functor cB : Set/B → PB assigns to a mapping f : A → B its image f(A) ∈ PB
and the right adjoint functor pB : PB → Set/B assigns to a subset its subset-inclusion. The
P -coverings are precisely the injective mappings. The comprehension scheme is consistent because
any injective mapping f : A→ B induces an isomorphism PA ∼= PB/f(A). This follows also from
Proposition 1.5 below because injective mappings are composable and left cancellable.

Proposition 1.5. A comprehension scheme P is consistent if and only if P -coverings compose and
are left cancellable.

Proof. Since by definition the left adjoints of a comprehension scheme P compose up to isomor-
phism, for each morphism g : B → C the following square of functors

E/B

cB

��

g◦− // E/C

cC

��
PB

g!
// PC
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pseudocommutes (i.e. commutes up to isomorphism). If g is a P -covering, and P -coverings compose,
then we get by restriction a pseudocommuting square

CovB

'
��

g◦− // CovC

'
��

PB
g!
// PC

with vertical equivalences. The latter induces a pseudocommuting square

CovB

'
��

g◦− // CovC/g

'
��

PB
g!
// PC/g!(?PB)

in which the upper horizontal functor is an equivalence (even an isomorphism) whenever P -coverings
are left cancellable. Therefore, if P -coverings compose and are left cancellable, then P is consistent.

Conversely, consider composable morphisms A
f−→ B

g−→ C in E . We shall say that f!(?PA) is
f -universal, if liftings of h : D → B to f : A→ B correspond one-to-one to morphisms h!(?PD)→
f!(?PA) in PB. According to Lemma 1.1, f!(?PA) is f -universal if and only if f is a P -covering.
We have thus to show that for a consistent comprehension scheme P , if g!(?PB) is g-universal then
f!(?PA) is f -universal precisely when (gf)!(?PA) is gf -universal.

Note that there is a morphism (gf)!(?PA) → g!(?PB) obtained by applying g! to the unique
morphism f!(?PA)→ ?PB . Since P is consistent, g! acts fully faithfully on morphisms with terminal
codomain so that the former morphism is unique too. In particular, assuming that g!(?PB) is g-
universal, for any h : D → C, a morphism h!(?PD) → g!(?PB) with lifting h̃ : D → B factors
through (gf)!(?PA) precisely when h̃(?PD) maps to f!(?PA), and these two data determine each
other.

Therefore, if moreover f!(?PA) is f -universal, then the lifting h̃ : D → B has itself a unique lifting
h̃′ : D → A, which implies that (gf)!(?PA) is gf -universal. Conversely, any map h̃ : D → B may
be considered as the lifting of h = gh̃ : D → C associated with the morphism g!(h̃!(?PD)→ ?PB).
Henceforth, if (gf)!(?PA) is gf -universal, then the liftings of h̃ to f correspond bijectively to liftings
of h to gf , i.e. to morphisms h̃!(?PD)→ f!(?PA) so that f!(?PA) is f -universal. q.e.d.

Lemma 1.6. Let P be a comprehension scheme on E.

(a) Pullbacks of P -coverings exist in E and are again P -coverings;

(b) If P is consistent then each morphism of E factors as a P -connected morphism followed by a
P -covering.

Proof. (a) Let us consider the following commutative square in E

elD(h∗(X))

pD(h∗(X))

��

h̄ // elB(X)

pB(X)

��
D

h
// B
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260 C. Berger, R. M. Kaufmann

where X is an object of PB and h̄ is induced by the identity of h∗(X) in PD, cf. Lemma 1.1. We
claim that the square is a pullback in E . Indeed, for any span (f ′ : D′ → elB(X), h′ : D′ → D) such
that pB(X)f ′ = hh′ we have to exhibit a unique map of spans towards (h̄, pD(h∗(X))). According to
Lemma 1.1, the existence of f ′ amounts to a morphism ?PD′ → (hh′)∗(X), but the latter amounts
to a morphism ?PD′ → (h′)∗(h∗(X)) which, again according to Lemma 1.1, yields a uniquely
determined lift D′ → elD(h∗(X)) of h′. We have to check that this lift composed with h̄ yields f ′,
but this just expresses that the latter is the lift of hh′ corresponding to ?PD′ → (hh′)∗(X).

(b) The unit of the adjunction cB : E/B � PB : pB at f : A → B is part of the following
diagram

A
ηf//

f

��

elB(f!(?PA))

pB(f!(?PA))
yy

B

where we replaced cB(f) with its definition f!(?PA). It suffices thus to show that ηf is P -connected.
Let us denote ? the distinguished terminal object of P elB(f!(?PA)) and write p for pB(f!(?PA)). We
have to show that the unique map (ηf )!(?PA)→ ? is invertible. By consistency of the comprehension
scheme, the left adjoint p! is fully faithful on morphisms with terminal codomain. Therefore, the
image p!(ηf )!(?PA) → p!(?) is the unique morphism in PB with fixed domain and codomain and
must be invertible because both sides are isomorphic to f!(?PA). It follows that the given map
(ηf )!(?PA)→ ? is invertible as well. q.e.d.

Theorem 1.7. Any consistent comprehension scheme P on E induces a complete orthogonal fac-
torisation system on E with left part consisting of P -connected morphisms and right part consisting
of P -coverings.

Proof. It follows from Lemma 1.6b that each morphism factors as a P -connected morphism followed
by a P -covering. Since P is consistent, P -coverings compose by Proposition 1.5 as do P -connected
morphisms by their very definition. Both classes contain all isomorphisms so that it remains to be
shown that any commuting square

A //

l
��

C

r

��
B

>>

// D

with P -connected l and P -covering r admits a unique diagonal filler. By Lemma 1.6a, the pullback
r′ : B ×D C → B exists in E and is a P -covering so that the factorisation system is complete.
Diagonal fillers B → C correspond bijectively to sections i′ : B → B ×D C of r′ such that i′ ◦ l
coincides with the comparison map A → B ×D C. By Lemma 1.1, sections of r′ correspond
bijectively to morphisms ?PB → (r′)!(?P (B×DC)) in PB. The comparison map A → B ×C D
corresponds to a uniquely determined morphism l!(?PA) → (r′)!(?P (B×CD)) in PB. Since l is P -
connected we have an isomorphism l!(?PA) ∼= ?PB yielding the unique section of r′ as required for
the orthogonality of the factorisation system. q.e.d.

Theorem 1.8. Any complete factorisation system (L,R) on E defines a consistent comprehension
scheme P(L,R) on E assigning to an object B the full subcategory (E/B)R of E/B spanned by the
R-morphisms with codomain B.
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Comprehensive factorisation systems 261

All consistent comprehension schemes inducing the factorisation system (L,R) via Theorem 1.7
are equivalent to P(L,R).

Proof. For any morphism f : A → B, the adjunction f! : (E/A)R � (E/B)R : f∗ is defined as
follows: for (a : A′ → A) ∈ (E/A)R we define f!(a) = rf◦a ∈ (E/B)R, and for (b : B′ → B) ∈
(E/B)R we define f∗(a) to be a pullback of a along f , which in virtue of completeness exists and
belongs to (E/A)R. Both assigments are functorial in virtue of the orthogonality of the factorisation
system. For adjointness, observe that as well morphisms a → f∗(b) in (E/A)R as well morphisms
f!(a)→ b in (E/B)R correspond bijectively to commuting squares

A′ //

a

��

B′

b

��
A

f
// B

in E . To establish these bijective correspondences it is essential that R-morphisms are left can-
cellable. This is a general property of orthogonal factorisation systems.

The category (E/B)R has the identity of B as distinguished terminal object. The comprehension
functor cB : E/B → (E/B)R is given by f 7→ rf , with adjoint pB : (E/B)R → E/B the canonical
embedding. In fact, the (cB , pB)-adjunction identifies (E/B)R with a full reflective subcategory
of E/B. The comprehension scheme P(L,R)B = (E/B)R is consistent in virtue of Proposition 1.5
because P(L,R)-coverings and R-morphisms coincide and R-morphisms are left cancellable.

Finally, any consistent comprehension scheme P : E → Adj∗ inducing the factorisation system
(L,R) satisfies P(L,R)B = (E/B)R = CovB ' PB. q.e.d.

Remark 1.9. We shall call the factorisation system (P -connected, P -covering) the comprehensive
factorisation defined by P . In the special case of small categories, the comprehension scheme
PA = SetA yields the factorisation of a functor into an initial functor followed by a discrete
opfibration because P -connected functors are precisely initial functors, cf. [33, Propositon 2]. This
is the factorisation originally introduced by Street and Walters as the comprehensive factorisation
of a functor, cf. [33, Theorem 3]. The “dual” comprehension scheme P ′A = SetA

op

yields the
factorisation of a functor into a final functor followed by a discrete fibration.

The powerset comprehension scheme on sets yields the image-factorisation of a set mapping.
This example extends in a natural way to any well-powered regular category E , using as powerset
the set of subobjects ordered by inclusion. The comprehension scheme amounts here to the choice
of a representing monomorphism A � B for each subobject of B, and so affords some form of
axiom of choice.

Our correspondence shows that all complete orthogonal factorisation systems (L,R) on E are
“comprehensive” with respect to the scheme P(L,R)B = (E/B)R. Nevertheless, the freedom to
choose equivalent comprehension schemes inducing the same factorisation system is valuable in
practice. Moreover, the correspondence allows us to classify factorisation systems according to
properties of the corresponding comprehension scheme. For instance, the value of the comprehension
scheme P : E → Adj∗ at a terminal object ?E of E contains a lot of information. We are primarily
interested in those cases where P (?E) = Set which actually fits best with our terminology (P -
connected, P -covering).
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The following proposition is remarkable insofar as it relates Frobenius reciprocity for a compre-
hension scheme, as formulated by Lawvere [26], to a natural and often easy-to-check condition on
the associated comprehensive factorisation system (which for precisely this relationship is some-
times called Frobenius property). These two conditions are both equivalent to a third one, also
frequently encountered in practice, and often called the Beck-Chevalley condition.

Proposition 1.10. For any consistent comprehension scheme P on E, the following three condi-
tions are equivalent:

(a) For each f : A → B the adjunction f! : PA � PB : f∗ satisfies Frobenius reciprocity, i.e.
for any X in PA and Y in PB, the canonical map

f!(X × f∗(Y ))→ f!(X)× Y

is invertible.

(b) (Beck-Chevalley) For any pullback square in E with P -coverings p and q

A′
g //

q

��

B′

p

��
A

f
// B

the induced natural transformation g!q
∗ → p∗f! is invertible.

(c) P -connected morphisms are stable under pullback along P -coverings.

Proof. Let us first notice that in (b) we can assume A′ = elA(f∗(Y )) and B′ = elB(Y ), cf. the proof
of Lemma 1.6a. By consistency of P , we can furthermore replace P elA(f∗(Y )) with PA/f∗(Y ) and
P elB(Y ) with PB/Y , cf. Lemma 1.2, so that we get the following commutative square of categories

PA/f∗(Y )
(εYf )!f! //

��

PB/Y

��
PA

f!

// PB

in which the vertical functors are the canonical projections. Now (b) is equivalent to the condition
that for each X in PA the morphism f!(X × f∗(Y ) → f∗(Y )) composed with the counit εYf :
f!f
∗(Y )→ Y is isomorphic (over Y ) to the morphism f!(X)× Y → Y which is precisely condition

(a). Condition (b) implies (c) by an easy diagram chase. Finally, if condition (c) holds, then the
assignment just described for a P -connected morphism f : A→ B and object Y in PB must take the
identity of f∗(Y ) to a morphism isomorphic to the identity of Y . This means that εYf is invertible,
i.e. f∗ is fully faithful for P -connected f . For such an f , condition (b) is automatically verified.
By consistency of P , every morphism f : A→ B factors as a P -connected morphism followed by a
P -covering, cf. Lemma 1.6b. It remains thus to show (a) or (b) for P -coverings f . For a P -covering
f , condition (a) amounts to the familiar isomorphism X ×Z (Y × Z) ∼= X × Y . q.e.d.
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Remark 1.11. The two comprehension schemes P, P ′ on Cat satisfy the three conditions of Propo-
sition 1.10. Condition (b) says that the square is exact in the sense of Guitart [17]. Note that
condition (c) yields thus two stability properties which are dual to each other. It is remarkable
that Guitart’s characterisation of exact squares shows that (b) is an exact square precisely when
for each Y in PB the induced P -covering g/Y → f/p(Y ) is P ′-connected. This can be used to give
an alternative proof of (c): If f is P -connected then f/p(Y ) is connected so that g/Y is connected
as well, which implies that g is P -connected.

1.12. Topological spaces.We define a comprehension scheme Ptop for the full subcategory Toplsc
of the category of topological spaces spanned by the locally path-connected, semi-locally simply
connected spaces: PtopA is the category Shloc(A) of locally constant set-valued sheaves on A. There
is an equivalence of categories Shloc(A) ' Cov(A) between locally constant sheaves on A and topo-
logical coverings of A (induced by the “espace étalé” construction EtA : Sh(A) → Top/A). The
sheaf-theoretical restriction functor f∗ : PtopB → PtopA corresponds to pulling back the correspond-
ing covering, and the right adjoint pA = EtA : Shloc(A)→ Toplsc/A satisfies the universal property
of Lemma 1.1. The existence of the comprehension scheme Ptop hinges thus on the existence of a
left adjoint f! : PtopA→ PtopB.

For general set-valued sheaves such a left adjoint does not exist, but for locally constant sheaves
over objects in Toplcs it does. One uses that in this case the monodromy action Shloc(A)→ SetΠ1(A)

is an equivalence of categories so that f! : PtopA → PtopB is induced by left Kan extension along
the induced functor Π1(f) : Π1(A) → Π1(B) on fundamental groupoids. The quasi-inverse to the
monodromy action assigns to a local system X : Π1(A) → Set the presheaf whose sections over
an open subset U of A consist of all families (xa ∈ X(a))a∈U such that, for (a, b) ∈ U × U and
(γ : a→ b) ∈ Π1(U), equality X(γ)(xa) = xb holds. This presheaf is a locally constant sheaf on A
precisely because A belongs to Toplsc.

The comprehension scheme Ptop is consistent because Ptop-coverings coincide with topological
coverings, and the latter compose and are left cancellable in Toplsc. In Section 1.19 we show that
the Ptop-connected morphisms are precisely those continuous maps which have connected homotopy
fibres, i.e. which induce a bijection on path-components and a surjection on fundamental groups.
The resulting comprehensive factorisation of a continuous map induces a formal construction of the
universal covering space for any based space in Toplsc, cf. Section 3.

Definition 1.13. A comprehension scheme P on E is said to restrict to a full and replete subcat-
egory E ′ of E if the restriction P|E′ is a comprehension scheme on E ′.

According to Lemma 1.1, a comprehension scheme P restricts to E ′ precisely when for each object
A of E ′ and each object X of PA, the object of elements elA(X) belongs to E ′ or, equivalently,
precisely when every P -covering of E with codomain in E ′ belongs to E ′. If P is consistent then so
is any of its restrictions.

1.14. Groupoids. The full subcategory Gpd of Cat spanned by the groupoids permits a restriction
of the comprehension scheme P : Cat → Adj∗. The resulting P -coverings are the usual groupoid
coverings, cf. Gabriel-Zisman [13, Appendix I]. Note that the two comprehension schemes P, P ′ for
Cat induce equivalent comprehension schemes for Gpd. In particular, a functor between groupoids
is initial (resp. a discrete opfibration) if and only if it is final (resp. a discrete fibration).

Bourn [6] constructs the comprehensive factorisation for groupoids by a different method, avail-
able not only for groupoids in sets but more generally for the category Gpd(E) of groupoids internal
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264 C. Berger, R. M. Kaufmann

to any exact category E . He considers Gpd(E) as a full reflective subcategory of E∆op

(cf. Section
1.19) and constructs (by means of the shift functor) for each groupoid B in E a simplicial path-
fibration Dec.(B) → B. The comprehensive factorisation of f : A → B is then constructed by
applying a “fibrewise” path-component functor to A×Dec.(A) Dec.(B)→ Dec.(B).

Definition 1.15. An adjunction i : D � E : r is called P -reflecting for a comprehension scheme
P on D if the left adjoint r : E → D induces slice functors E/B → D/r(B) with fully faithful right
adjoint restrictions Covr(B) → E/B.

If i : D ↪→ E is a full embedding, D is called a P -reflective subcategory of E.

A full reflective subcategory D of E is P -reflective if and only if pullbacks of P -coverings exist
in E along the components ηB : B → r(B) of the unit of the adjunction, and these pullbacks
are preserved under the reflection. This means that for any P -covering f ′ : A′ → r(B) in D the
following pullback

A //

��

A′

f ′

��
B

ηB
// r(B)

exists in E and has the property that the upper horizontal map is isomorphic to the unit-component
ηA : A → r(A). Such a condition (for a specific choice of P -coverings) occurs at several places in
literature. It is the key property of the reflective factorisation systems of Cassidy-Hébert-Kelly [8].

Proposition 1.16. Let P be a (consistent) comprehension scheme on D.
If D is a full P -reflective subcategory of E then P extends to a (consistent) comprehension scheme

PE on E putting PEB = P (r(B)). The PE -coverings are precisely those morphisms f : A → B
constructible by a pullback square

A //

f

��

A′

f ′

��
B

ηB
// r(B)

in which f ′ : A′ → r(B) is a P -covering.
In the consistent case, the PE -connected morphisms f are precisely those whose reflection r(f)

is P -connected.

Proof. By P -reflectivity, the induced functor on slice categories E/B → D/r(B) has a right adjoint
which is fully faithful at P -coverings. This implies that the comprehension functor cB : E/B → PEB
has a fully faithful right adjoint so that PE is a comprehension scheme. If P is consistent, i.e. P -
coverings compose and are left cancellable, then the same is true for PE -coverings by P -reflectivity. If
this is the case, a morphism f is PE -connected precisely when f is left orthogonal to all PE -coverings.
By adjunction this amounts to the condition that r(f) is left orthogonal to all P -coverings, i.e. r(f)
is P -connected. q.e.d.

Remark 1.17. Proposition 1.16 and Theorem 1.7 recover one of the main results of Cassidy-Hébert-
Kelly [8], namely : assume that for a given stable, composable and left cancellable class R of
morphism in E the following two conditions hold:
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1. the full subcategory D of E spanned by the objects B such that B → ?E belongs to R is
reflective in E ;

2. The class L of those morphisms which are inverted by the reflection (1) is closed under
pullback along morphisms in R.

Then (L,R) is a complete orthogonal factorisation system on E .
Indeed, the reflective subcategory D is equipped with the consistent comprehension scheme

PB = D/B. Since the unit-components of the adjunction are inverted by the reflection, condition
(2) implies that D is P -reflective. Therefore P extends to a consistent comprehension scheme PE
inducing a complete orthogonal factorisation system on E . PE -coverings coincide with R-morphisms
while PE -connected morphisms are those whose reflection is P -connected, i.e. invertible.

Remark 1.18. For a given full reflective subcategory D of E with comprehension scheme P it may
be difficult to check P -reflectivity using Definition 1.15. In view of Proposition 1.16 and Theorem
1.7, the resulting class of PE -coverings is stable (i.e. pullbacks along arbitrary maps in E exist and
are PE -coverings) and, for each PE -covering f : A→ B, the reflection r(f) is a P -covering and the
naturality square

A
ηA //

f

��

r(A)

r(f)

��
B

ηB
// r(B)

is cartesian. Conversely, if the class of those morphisms f : A→ B for which r(f) is a P -covering
and the naturality square is cartesian, forms a stable class of morphisms of E , then D is P -reflective
and the stable class represents precisely the PE -coverings. It is often easier to check P -reflectivity
using this second method.

1.19. Simplicial sets. Through the nerve functor the category Gpd of groupoids is a full reflective
subcategory of the category ∆̂ = Set∆op

of simplicial sets. The reflection Π1 : ∆̂→ Gpd is usually
called the fundamental groupoid functor. The subcategory of groupoids is P -reflective in ∆̂ with
respect to the comprehension scheme P of Section 1.14 as follows from Remark 1.18 applied to
the stable class of discrete Kan fibrations. Indeed, for any discrete Kan fibration f : A → B, the
induced functor Π1(f) : Π1(A)→ Π1(B) is a P -covering of groupoids, and the naturality square is
cartesian because the comparison map A→ B ×Π1(A) Π1(B) is bijective on 0-simplices, and hence
invertible [13, Appendix I, Proposition 2.4.2].

According to Proposition 1.16 there is an extended comprehension scheme P∆̂. The latter
induces the usual covering theory for simplicial sets, cf. Gabriel-Zisman [13, Appendix I.2-3].
As we have seen, the P∆̂-coverings are discrete Kan fibrations. The associated comprehensive
factorisation of a simplicial map yields in particular the universal covering for any based simplicial
set, cf. Section 3.

The adjunction |−| : ∆̂ � Toplsc : Sing has the property that both, the geometric realisation
functor and the singular functor, preserve coverings. Since the counit of the adjunction is a cartesian
natural transformation when restricted to coverings, an orthogonality argument shows that the
geometric realisation functor takes P∆̂-connected simplicial maps to Ptop-connected continuous
maps. In other words, geometric realisation preserves comprehensive factorisations.
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A continuous map f has connected homotopy fibres if and only if the induced map Π1(f) =
Π1(Sing(f)) on fundamental groupoids has connected homotopy fibres. Quillen’s Theorem B [31]
combined with [33, Proposition 2] shows that a map of groupoids has connected homotopy fibres if
and only if it is P -connected. In virtue of Proposition 1.16, the analogous statement is true for a
map of simplicial sets, resp. a continuous map of topological spaces.

2 Feynman categories and multicategories

Hermida characterises in [18] monoidal categories as special non-symmetric multicategories, namely
as the representable one’s. The idea of Feynman categories [24] is somehow opposite, namely
to consider multicategories as special symmetric monoidal categories. This second point of view
yields a parallel understanding of the standard comprehension schemes for Feynman categories and
multicategories.

An important role is played by permutative categories [28] (which are symmetric strict monoidal
categories) because the free permutative category V⊗ generated by a category V admits a useful
explicit description (cf. e.g. [10]). In particular, if V is a groupoid then so is V⊗. For any category
C, we denote by Ciso the subcategory of invertible morphisms. If C is symmetric monoidal, then so
is Ciso.

We shall call a symmetric monoidal category F framed if there is a groupoid V equipped with a
full embedding ι : V ↪→ F such that the induced functor V⊗ → Fiso is an equivalence of symmetric
monoidal categories. In particular, any framed symmetric monoidal category has an essentially
small underlying category.

Framed symmetric monoidal categories are thus triples (F,V, ι). They form a category with
morphisms (F1,V1, ι1) → (F2,V2, ι2) the pairs (ϕ,ψ) consisting of a strong symmetric monoidal
functor ϕ : F1 → F2 and a map of groupoids ψ : V1 → V2 such that ϕι1 = ι2ψ.

Any framed symmetric monoidal category (F,V, ι) induces a small multicategory OF (aka
coloured symmetric operad) with same objects as V and multimorphisms

OF(v1, . . . , vk; v) = F(ι(v1)⊗ · · · ⊗ ι(vk), ι(v)).

The groupoid V coincides with the groupoid of invertible unary morphisms of OF. Conversely, any
small multicategory O induces a framed symmetric monoidal category (FO,VO, ιO): the groupoid
VO is the groupoid of invertible unary morphisms of O, the objects of FO are those of (VO)⊗,
written as tensor products of objects of V, and the morphisms of FO are given by

FO(v1 ⊗ · · · ⊗ vk, w1 ⊗ · · · ⊗ wl) =
∐

ϕ:{1,...,k}→{1,...,l}

O(vϕ−1(1);w1)× · · · × O(vϕ−1(l);wl)

where for any ordered subset I = (i1 < · · · < ir) of {1, . . . , k}, the symbol vI stands for the sequence
vi1 , . . . , vir .

The assignment of a symmetric monoidal category to a multicategory occurs at several places
in literature. The one-object case goes back to May-Thomason [29]. The formula above occurs
in Elmendorf-Mandell [10, Theorem 4.2]. Hermida [18] uses a similar functor from non-symmetric
multicategories to monoidal categories. The idea of bookkeeping a “framing” goes back to Getzler’s
“patterns” [14], where the functor ι⊗ : V⊗ → F is only supposed to be essentially surjective.

The two assignments O 7→ FO and F 7→ OF form an adjunction between small multicategories
and framed symmetric monoidal categories. For each small multicategory O the unit-component
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O → OFO is invertible. Small multicategories form thus a full coreflective subcategory of framed
symmetric monoidal categories.

We arrive at the following reformulation of the definition of a Feynman category of [24]: A
Feynman category is a framed symmetric monoidal category (F,V, ι) which is hereditarily framed
in the sense that the double slice category F ↓ F itself is a framed symmetric monoidal category
with respect to the “groupoid” (F ↓ V)iso, i.e. the canonical map (F ↓ V)⊗iso → (F ↓ F)iso is an
equivalence of symmetric monoidal categories. Notice that our smallness condition (V small) is
slightly more restrictive than the one used in [24].

Proposition 2.1. The counit-component FOF
→ F is an equivalence of framed symmetric monoidal

categories precisely when F is a Feynman category.

This proposition follows from [24, Section 1.2, Remark 1.4.2 and Section 1.8.3]. It also fol-
lows from a general statement of Batanin, Kock and Weber about pinned symmetric monoidal
categories, cf. [3, Proposition 4.2, Theorems 5.13 and 5.15]. In particular, the 2-categories of
small multicategories and of Feynman categories are 2-equivalent. This 2-equivalence respects the
respective notions of algebra.

An algebra for a Feynman category F or, as we shall say, an F-operad is a strong symmetric
monoidal functor F → (Set,×, ?Set). F-operads and symmetric monoidal natural transformations
form a locally finitely presentable category F-ops, cf. Getzler [14, Theorem 2.10]. Therefore,
Freyd’s Adjoint Functor Theorem applies, and each Feynman functor f : (F,V, ι)→ (F′,V ′, ι′) has
a limit-preserving restriction functor f∗ : F′-ops→ F-ops which comes equipped with a left adjoint
extension functor f! : F-ops→ F′-ops, see also [24, Theorem 1.6.2].

Remark 2.2. It is fundamental that all these extension functors are given by pointwise left Kan
extension, i.e. for any F-operad F and object Y of the target F′, the extension f!(F ) at Y is given
by (f!F )(Y ) = colimf(−)↓Y F (−) where the colimit is computed in sets. This property is one of the
main advantages of Feynman categories over multicategories.

Let us sketch the argument: since for any functor V → V ′, extension along the induced functor
of permutative categories V⊗ → (V ′)⊗ is a pointwise left Kan extension, it suffices to show that
for any Feynman category (F,V, ι), extension along ι⊗ : V⊗ → F is a pointwise left Kan extension.
This amounts to showing that pointwise left Kan extension takes permutative functors V⊗ → Set
to strong symmetric monoidal functors F → Set. This in turn can be reduced to the following
property: for each decomposition X ∼= v1 ⊗ · · · ⊗ vk of an object X of F into a tensor product of
objects of V, the canonical map

(F/v1)iso × · · · × (F/vk)iso → (F/X)iso

is a final functor, i.e. has connected coslices. This last condition is a reformulation of the hereditary
condition of F, cf. [24, Section 1.8.5].

Let us mention that Batanin, Kock and Weber establish the following converse statement, cf.
[3, Propositions 2.11, 3.14, 4.2]: if for a framed symmetric monoidal category (F,V, ι), extension
along ι⊗ : V⊗ → F is given by pointwise left Kan extension, then F is hereditarily framed, i.e. a
Feynman category.

Proposition 2.3. There is a consistent comprehension scheme for Feynman categories assigning
to a Feynman category F the category of set-valued F-operads.
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Proof. We first exhibit a Feynman category of elements elF(F ) over F with the universal property
of Lemma 1.1 for each (F,V, ι)-operad F , closely following [23]. Indeed, the usual category of
elements el(F ) of the underlying diagram F : F → Set comes equipped with a Feynman category
structure: for objects (X,x ∈ F (X)) and (Y, y ∈ F (Y )), the tensor is given by (X,x) ⊗ (Y, y) =

(X ⊗ Y, ϕX,YF (x, y)) where ϕX,YF : F (X)× F (Y ) ∼= F (X ⊗ Y ) is the symmetric monoidal structure
of F . This endows el(F ) with the structure of a symmetric monoidal category. Moreover el(Fι) is
a groupoid (cf. Section 1.14) equipped with a full embedding el(ι) : el(Fι) ↪→ el(F ). Since we have
isomorphisms el(Fι)⊗ ∼= el(Fι⊗) and el(F )iso ∼= el(F|Fiso), we get a framed symmetric monoidal
category elF(F ) = (el(F ), el(Fι), el(ι)) over F.

Since the projection elF(F ) → F is a discrete opfibration, the hereditary condition of F (as
formulated in Remark 2.2) lifts to elF(F ), see [23] for a detailed proof. The latter is thus a
Feynman category over F. Since extensions along Feynman functors are computed as pointwise
left Kan extensions, the fact that the usual category of elements construction defines a consistent
comprehension scheme on Cat (cf. Section 1.3) implies that the Feynman category of elements
construction defines a consistent comprehension scheme for Feynman categories. q.e.d.

Remark 2.4. Consistency of the comprehension scheme implies that for any F-operad F , the cat-
egory of F-operads over F is canonically equivalent to the category of elF(F )-operads, cf. Lemma
1.2. Moreover, any Feynman functor f : F→ F′ factors as a connected functor F→ elF′(f!(?F-ops))
followed by a covering projection elF′(f!(?F-ops)) → F′ and this factorisation is unique up to iso-
morphism. The existence of such a factorisation has been proved in [23], but its uniqueness is
new.

The same statements hold for small multicategories O by restriction of the comprehension
scheme, cf. Definition 1.13. Any O-algebra A defines a multicategory of elements elO(A) with
objects pairs (X ∈ ObO, x ∈ A(X)) and multimorphisms

elO(A)((X1, x1), .., (Xk, xk); (X,x)) = {f ∈ O(X1, .., Xk;X) |A(f)(x1, .., xk) = x}.

The resulting equivalence of categories elO(A)-Alg ' O-Alg/A is folklore but our proof seems to
be the first written account of it. The comprehensive factorisation of a multifunctor extends Street
and Walters’ comprehensive factorisation of a functor.

Remark 2.5. In Section 1 we developed comprehension schemes and comprehensive factorisations
for set-based categories considering the cartesian product as symmetric monoidal structure. Parts
of the theory extend to comprehension schemes taking values in symmetric monoidal categories and
adjunctions with symmetric lax comonoidal left adjoint and symmetric lax monoidal right adjoint.
This leads to a category of elements construction for symmetric lax (co)monoidal functors. Some
steps in this direction are made in [24, Section 3.2] and [23, Section 2.2].

2.6. Planar-cyclic and surface-modular operads. Cyclic and modular operads have been
introduced by Getzler and Kapranov [15] as tools to understand moduli spaces of surfaces and
algebraic curves. Since their introduction they have proved useful in other areas of mathematics as
well, e.g. in combinatorics, in computer science or in mathematical physics. One of our motivations
in writing this text on comprehensive factorisations was a recent article of Markl [27] in which he
defines a new class of modular-like operads, based on the combinatorics of “polycylic orderings”,
with the advantage over modular operads of having less built-in symmetries. With the comprehen-
sive factorisation in hand, we shall see that Markl’s definition is a very natural one and to some
extent the only possible.
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We shall consider the following commutative diagram of Feynman categories

F¬ sym
i′ //

p(τassoc)

��

F¬ cyc
k′ //

p(τplanar)

��

F¬mod

p(τribbon)

��
Fsym

i
// Fcyc

k
//

j
((

Fmod

p(τgenus)

��
Fctd

in which the horizontal Feynman functors i′, k′, k are connected and all vertical Feynman functors
are coverings. In virtue of the uniqueness of comprehensive factorisations, the whole diagram is
entirely determined by the Feynman functors i and j together with the Fsym-operad τassoc. In
particular, we have the identifications j!(?Fcyc-ops) = τgenus, i!(τassoc) = τplanar and k!(τplanar) =
τribbon.

The Feynman category Fsym has as objects sequences (n1, . . . , nk) of natural numbers which we
identify with disjoint unions of corollas ?n1

t · · · t ?nk having ni flags1 respectively. The generating
morphisms ?n1

t · · · t ?nk → ?n are represented by rooted trees having k vertices and n flags such
that each source-corolla is identified with the open neighborhood of a specific vertex of the tree
and such that the target-corolla is identified with the tree itself after contraction of all its edges.
It is important that these generating morphisms are represented not just by abstract trees, but by
trees having all their half-edges (resp. flags) identified with one and exactly one flag of the source
(resp. target). The symmetric monoidal structure of Fsym is given by disjoint union, i.e. general
morphisms are represented by rooted forests. Composition of generating morphisms corresponds
to insertion of one rooted tree into a specific vertex of another rooted tree (cf. either [2, Part IV]
or [24, Appendix] for precise definitions). The underlying multicategory of Fsym is isomorphic to
the N-coloured symmetric operad of [5, 1.5.6] whose algebras are symmetric operads. Therefore,
Fsym-operads are symmetric operads as well.

Every class Γ of graphs which is closed under the process of inserting a graph of Γ into the
vertex of another graph of Γ gives rise to a well-defined Feynman category FΓ, and hence also to
a well-defined multicategory OΓ. The Feynman category Fsym corresponds thus to the insertional
class of rooted trees.

The Feynman category Fcyc corresponds to the insertional class of general unrooted trees. The
Fcyc-operads are precisely the cyclic operads of Getzler-Kapranov. The Feynman functor i : Fsym →
Fcyc is defined by assigning to a rooted tree its underlying unrooted tree. This increases “symmetry”
because the symmetry group of a rooted corolla ?n+1 is Σn while the symmetry group of i(?n+1)
is Σn+1.

Connected graphs form an insertional class of graphs to which corresponds the Feynman category
Fctd, cf. [25], where this Feynman category has been denoted Gctd. Since trees are connected we
have a Feynman functor j : Fcyc → Fctd. This Feynman functor is not connected because the
extension of a terminal cyclic operad along k yields the Fctd-operad τgenus which assigns to each

1In our context, a graph is given by a quadruple (V, F, s, ι) where V is a set of vertices, F a set of abstract flags,
s : F → V the source-map and ι : F → F an involution. A fixpoint under ι is called a flag, a non-fixpoint a half-edge.
The orbits formed by two half-edges are called edges. Each graph can be topologised in such a way that edges become
homeomorphic to [0, 1] or S1 and flags homeomorphic to [0, 1[. A corolla is a connected graph without edges.

Unauthenticated
Download Date | 2/28/18 8:03 AM



270 C. Berger, R. M. Kaufmann

corolla ?ni of Fctd the set N of natural numbers, and to each generating morphism of Fctd the
operation of adding the genus of the representing connected graph, cf. [23, 5.4.2]. The genus of
a connected graph is by definition the rank of its fundamental group (which equals the number of
edges not belonging to a spanning subtree).

The Feynman category Fmod is the Feynman category of elements of τgenus. Its operads are
precisely the modular operads of Getzler-Kapranov [15], while Fctd-operads are modular operads
“without genus-labeling”. In other words, the comprehensive factorisation of j : Fcyc → Fctd yields
the connected Feynman functor k : Fcyc → Fmod followed by the covering p(τgenus) : Fmod → Fctd.
It is thus the genus-labeling of a modular operad which is responsible for the connectedness of k.

Let us now define the upper horizontal line. The Fsym-operad τassoc is the symmetric operad
for associative monoids. The latter associates to a rooted corolla ?n+1 the symmetric group Σn on
n letters. The elements of this symmetric group can be thought of as orderings of the non-root flags
of ?n+1. It follows that the value of τassoc at a generating morphism of Fsym is the set of (isotopy
classes of) planar embeddings of the representing rooted tree. Therefore, the Feynman category
F¬ sym of elements of τassoc is equivalent to the Feynman category associated with the insertional
class of planar rooted trees. Here, all symmetry groups are trivial and F¬ sym-operads are precisely
non-symmetric operads.

In order to get the Feynman category F¬ cyc we have to compute the “cyclic envelope” i!(τassoc)
which we denote τplanar. Indeed, the latter assigns to a generating morphism of Fcyc the set of
planar structures of its representing tree. As above, this implies that the Feynman category F¬ cyc

of elements of τplanar is equivalent to the Feynman category associated with the insertional class of
planar trees. This time there are non-trivial symmetry groups. For instance, a planar corolla ?n+1

admits the cyclic group of order n + 1 as symmetry group. We call the associated F¬ cyc-operads
planar-cyclic operads. Markl calls them non-Σ-cyclic operads.

Finally, in order to get the last Feynman category F¬mod we have to compute the “modular
envelope” j!(τplanar) which we denote τribbon. Although the computation of this modular envelope
is quite involved, cf. [4], the result is easy to state: one obtains for each genus-labelled corolla ?g,n
of Fmod the set τribbon(?g,n) of equivalence classes of one-vertex ribbon graphs with g loops and n
flags. These equivalence classes correspond one-to-one to polycyclic orderings of the set of flags
into b possibly empty cycles with the additional property that g− b+ 1 is even and nonnegative. It
can be checked that F¬mod-operads are precisely Markl’s geometric non-Σ-modular operads. We
call them surface-modular operads.

A ribbon graph is a graph (V, F, s, ι) together with cyclic orderings of the fibres s−1(v), v ∈ V .
These cyclic orderings assemble into a permutation N : F → F whose cycles are precisely the fibres
of s : F → V . Two ribbon graphs are equivalent if there exists a third ribbon graph which “ribbon
contracts” to both, where “ribbon contraction” means contraction of a subforest. Equivalence
classes of ribbon graphs correspond one-to-one to topological types of bordered oriented surfaces
where the boundary components of the surface correspond to the cycles of N∞ = N ◦ ι. The flags
contained in such a cycle give rise to markings of the corresponding boundary component of the
surface. Empty cycles correspond to empty boundaries and are usually considered as punctures
of the surface. Under this correspondence the nonnegative integer 1

2 (g − b + 1) is the genus of
the associated surface. The result above gives thus an explicit link between the combinatorics of
surface-modular operads and the topological classification of bordered oriented surfaces, cf. [4].
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3 Galois theory for categories with discrete comprehension scheme

That Galois theory for field extensions is intimately related to covering theory for spaces has been
advocated by Grothendieck [16] and since then by many others. We try to follow this line by
developing some pieces of Galois covering theory in the general context of categories equipped with
a discrete comprehension scheme.

Throughout this section we fix a category E with consistent comprehension scheme P and
terminal object ?E and assume that P (?E) is the category of sets. We assume furthermore that for
each f : A → B the adjunction f! : PA � PB : f∗ satisfies Frobenius reciprocity or, equivalently,
that pullbacks of P -connected morphisms along P -coverings are again P -connected, cf. Proposition
1.10. A consistent comprehension scheme with these two properties will be called discrete. We shall
omit P from notation.

For any object A we define the object π0(A) of connected components of A by comprehensive
factorisation A→ π0(A)→ ?E of the unique map A→ ?E .

An object A is called discrete (resp. connected) if A→ π0(A) (resp. π0(A)→ ?E) is invertible.
A morphism f : A → B is called coherent if f∗ : PB → PA preserves coproducts. An object A is
called locally connected if A→ π0(A) is coherent.

Proposition 3.1. Small coproducts of copies of ?E exist and are precisely the discrete objects of
E. Every locally connected object is coproduct of connected objects and this decomposition is stable
under pullback along coherent maps.

Proof. By definition, the discrete objects are precisely those covering ?E . The category Cov?E
is equivalent to P (?E) = Set where every object is a coproduct of singletons. Therefore, every
discrete object of E is a coproduct of copies of ?E . The injections of this coproduct are coverings by
Proposition 3.2b. The Frobenius property implies then that each element i : ?E → π0(A) induces
a connected subobject Ai of A by pullback along A → π0(A). If A → π0(A) is coherent we get a
canonical isomorphism A ∼=

∐
i∈π0(A)Ai. Stability under coherent pullback follows from the way

pullbacks of coverings are constructed, cf. the proof of Lemma 1.6a. q.e.d.

Lemma 3.2. –

(a) The discrete objects form a full reflective subcategory with reflection π0.

(b) Any morphism between discrete objects is a covering.

(c) Any connected morphism A→ B induces a bijection π0(A)→ π0(B).

Proof. (a) The required universal property of A→ π0(A) follows from orthogonality

A //

��

D

��
π0(A) //

<<

?E

where D is a discrete object, i.e. D → ?E is a covering.
(b) This follows from left cancellability of coverings.
(c) Right cancellability of connected morphisms implies that π0(A) → π0(B) is connected. By

(b) the latter is also a covering and hence invertible. q.e.d.
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A covering A → B is called an epicovering (resp. monocovering) if the induced mapping
π0(A) → π0(B) is surjective (resp. injective). A morphism A → B is called complemented if the
comparison map A→ π0(A)×π0(B) B is invertible.

Proposition 3.3. Every covering factors essentially uniquely into an epicovering followed by a
complemented monocovering. If the codomain is locally connected the latter is the inclusion of a
coproduct of connected components.

Proof. For a covering A→ B consider the following commutative diagram

A
i //

��

D ×π0(B) B
j //

k

��

B

��
π0(A) // D // π0(B)

in which the lower line is the “image factorisation” of π0(A) → π0(B). Since the inclusion
D ↪→ π0(B) is a covering, its pullback j exists and is a covering, and hence i is a covering as
well, by left cancellability of coverings. The Frobenius property implies that k is connected so that
the discrete object D gets identified with π0(D×π0(B) B). The upper line is thus the required fac-
torisation. Essential uniqueness amounts to orthogonality between epicoverings and complemented
monocoverings inside the category of coverings. This follows from a diagram chase using Lemma
3.2a and the orthogonality between surjections and injections in Set.

If B is locally connected then D ×π0(B) B is coproduct of those connected components of B
which are indexed by elements of D, cf. proof of Proposition 3.1. q.e.d.

Corollary 3.4. The following three conditions are equivalent:

(E) Epicoverings are strongly epimorphic inside the category of coverings;

(M) Monomorphic coverings are complemented;

(R) Every covering factors into a strongly epimorphic covering followed by a complemented mono-
covering.

Proof. According to Lemma 3.2a-b the discrete objects span a full reflective subcategory of the
category of coverings. The reflection π0 takes a strongly epimorphic covering to a surjection, i.e.
every strongly epimorphic covering is an epicovering. Condition (E) expresses thus that inside
the category of coverings strong epimorphisms and epicoverings coincide. Similarily, condition (M)
expresses that monomorphic coverings and complemented monocoverings coincide. Since by Propo-
sition 3.3 epicoverings and complemented monocoverings form orthogonal classes in the category
of coverings, conditions (E), (M) and (R) are equivalent. q.e.d.

An object A is called based if it comes equipped with a morphism α : ?E → A in which case we
shall write (A,α).

Definition 3.5. The universal covering of a based object (A,α) is defined by comprehensive fac-
torisation ?E → Uα → A of α. The fundamental group π1(A,α) is the group of automorphisms of
uα : Uα → A fixing A.
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It follows from the orthogonality of the comprehensive factorisation that for each covering p :
(B, β)→ (A,α) there is one and only one lift of coverings Uα → B

?E
β //

α′

��

B

p

��
Uα

>>

uα
// A

taking α′ to β. This justifies our terminology.
Since by Lemma 1.1, the fundamental group π1(A,α) can also be identified with the automor-

phism group of α!(?Set) in PA, based maps f : (A,α) → (B, β) induce group homomorphisms
π1(f) : π1(A,α)→ π1(B, β) in a functorial way.

Remark 3.6. The previous definitions recover the classical π0- and π1-functors for topological spaces,
simplicial sets and groupoids with respect to the comprehension schemes discussed in Section 1.
Although this Galois-type definition of fundamental group a priori depends on the choice of base-
point we will see below that under certain conditions (essentially those of Corollary 3.4) different
basepoints of a connected, locally connected object yield isomorphic fundamental groups.

For the category of small categories we get the usual π0-functor, but the conditions of Corollary
3.4 are not met and different basepoints yield here in general non-isomorphic universal coverings
and non-isomorphic fundamental groups. Moreover, every based category (A,α) has two natural
“dual” fundamental groups, the automorphism group of the universal P -covering α/A → A, and
the automorphism group of the universal P ′-covering A/α→ A, cf. Section 1.3.

Proposition 3.7. For any based object (A,α), the fibre functor α∗ : PA → Set : α! induces a
monad on sets which is isomorphic to−× π1(A,α) whenever α∗ is faithful. If in addition the fibre
functor is monadic, the category of π1(A,α)-sets is equivalent to the category of coverings over A.

Proof. The second statement follows from the first because CovA ' PA. For the first statement
we exploit the close relationship between adjunctions fulfilling Frobenius reciprocity and group
actions, cf. Townsend [34] and Bruguières, Lack and Virelizier [7]. Indeed, since in a cartesian
context functors are automatically comonoidal, all that is needed for a monad T to be a Hopf
monad, and hence to induce a group action (cf. [7, Theorem 5.7]), is the invertibility of the fusion
operator T (X × TX ′) → TX × TX ′. If T = α∗α! this follows from Frobenius reciprocity, cf.
Proposition 1.10a, putting f = α and Y = α!X

′ and applying α∗.
The acting group has underlying set T (?Set) and the category of T -algebras is equivalent to

the category of −× T (?Set)-sets. Since elA(α!(?Set)) yields the universal covering Uα, the group
π1(A,α) acts simply transitively on α!(?Set) which yields the required identification in case α∗ is
faithful. q.e.d.

Let us recall the following terminology: A covering ξ : E → A is called principal if the action-
map Aut(ξ) • E → E ×A E is invertible, where Aut(ξ) denotes the group of automorphisms of ξ
fixing A, and Aut(ξ) •E denotes a coprodut of copies of E indexed by the elements of Aut(ξ). We
shall say that the principal covering ξ admits the Borel construction if for any Aut(ξ)-set X, the
quotient X ×Aut(ξ) E of X • E by the diagonal Aut(ξ)-action exists.

Theorem 3.8. Let E be a category with discrete comprehension scheme such that
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(i) All objects are locally connected;

(ii) The terminal object ?E is projective with respect to epicoverings;

(iii) Epicoverings are strongly epimorphic inside the category of coverings;

(iv) Principal coverings admit the Borel construction.

Then for any connected object A and any basepoint α : ?E → A the fibre functor α∗ is monadic, and
the category of coverings over A is equivalent to the category of π1(A,α)-sets. In particular, any
two basepoints of A induce isomorphic fundamental groups and isomorphic universal coverings.

Proof. We proceed in three steps. We show (1) that α∗ is conservative by proving that the counit
of the (α!, α

∗)-adjunction is pointwise a strong epimorphism. This implies that α∗ is faithful and

hence (by Proposition 3.7) that α∗ factors through a conservative functor ϕ∗ : CovA → Setπ1(A,α).
We show (2) that ϕ∗ has a left adjoint functor ϕ! and (3) that ϕ! is fully faithful proving thereby

that (ϕ!, ϕ
∗) is an equivalence and α∗ monadic. The equivalences Setπ1(A,α) ' CovA ' Setπ1(A,β)

imply that the fundamental groups with respect to any basepoints α, β are isomorphic. Moreover,
both universal coverings uα, uβ correspond to the regular representation of their fundamental group
and are thus isomorphic in CovA.

For (1) observe that under the equivalences Cov?E ' P (?E) and CovA ' PA the fibre functor
α∗ is given by pullback along α : ?E → A. The universal property of uα : Uα → A shows
that CovA(uα,−) is isomorphic to α∗, and the counit α!α

∗(ξ) → ξ at a covering ξ : E → A
may be identified with CovA(uα, ξ) • uα → ξ. The right cancellability of connected morphisms
shows that Uα is connected, so that the coproduct CovA(uα, ξ) • Uα is a coproduct of connected
components indexed by the elements of the fibre α∗(ξ). Since A is connected, the restriction of
ξ : E → A to any connected component of E is an epicovering so that by hypothesis (ii) the
fibre α∗(ξ) = CovA(uα, ξ) contains a point in any connected component of E. Computing left
adjoints along ?E → A → ?E implies then that the counit induces a surjection on connected
components π0(CovA(uα, ξ) • Uα) → π0(E), i.e. an epicovering. By hypothesis (iii) any such is
strongly epimorphic inside the category of coverings. This shows that the counit is pointwise a
strong epimorphism in CovA.

Note that since by hypothesis (i) all objects are locally connected, distinct connected components
are disjoint. Therefore, since by Corollary 3.4 subobjects in CovA are complemented, general
coproducts in CovA are disjoint as well. Moreover, for each morphism f : A → B, pullback
f∗ : CovA → CovB preserves initial objects and hence disjointness. This applies in particular to
the fibre functor α∗.

For (2) observe that the universal covering uα is a principal covering. Indeed, since CovA(uα,−)
represents α∗ we get CovA(uα, uα) = Aut(uα) = π1(A,α), cf. the proof of Proposition 3.7. The
counit at uα is given by Aut(uα) • Uα → Uα which extends to the action-map Aut(uα) • Uα →
Uα ×A Uα. The latter is invertible since it induces (under the conservative fibre functor) the
invertible action-map of the regular representation of π1(A,α). It is now readily verified that for
every π1(A,α)-set X the Borel construction X×π1(A,α)uα has the universal property of ϕ!(X), and

hence the left adjoint ϕ! : Setπ1(A,α) → CovA exists by hypothesis (iv).
For (3) it suffices to show that the unit X → ϕ∗ϕ!(X) is invertible for any π1(A,α)-set X. But

ϕ∗ is just α∗ equipped with its canonical π1(A,α)-action. Therefore, the unit X → ϕ∗ϕ!(X) may be
identified with the discrete Borel construction X → X ×π1(A,α) π1(A,α) which is invertible. q.e.d.
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Remark 3.9. It is surprising how little extra-conditions are needed to ensure that a discrete com-
prehension scheme takes values in categories of G-sets for discrete groups G. In virtue of Corollary
3.4 our hypothesis (iii) is precisely axiom (G3) of Grothendieck’s axioms (G1)-(G6) characteris-
ing categories of sets with a continuous action by a profinite group, cf. [16, chapter V.4]. The
four hypotheses of Theorem 3.8 are satisfied by the categories of (well-behaved) topological spaces,
simplicial sets and groupoids equipped with the comprehension schemes of Sections 1.12, 1.19 and
1.14, but hypotheses (ii) and (iii) fail for the category of small categories with respect to both
comprehension schemes P, P ′ of Section 1.3.

Remark 3.10. We end this article with a few pointers to literature where Galois-theoretical ideas
are potentially related to suitable comprehension schemes.

Street and Verity [32] define comprehensive factorisation in a 2-categorical setting and express
principal coverings by means of an internal notion of torsor.

Barr and Diaconescu [1] introduce the notion of a locally simply connected topos. In view of
Moerdijk’s representation theorem for Galois toposes [30], and by analogy with the topological case,
it is tempting to conjecture that there is a comprehension scheme assigning to a locally (simply)
connected Grothendieck topos the Galois topos of locally constant objects therein. If this is the case
then the corresponding comprehensive factorisation of a geometric morphism should be of interest.

Funk and Steinberg [12] construct a universal covering topos for each inverse semigroup with a
concrete interpretation of the associated fundamental group. We conjecture that their construction
derives from a suitable comprehension scheme.

Janelidze [21] defines Galois theory in terms of a given reflective subcategory (an axiomatisation
of the full subcategory of “discrete” objects). He developes an abstract notion of covering extension
which subsumes the topological coverings and the central extensions in algebra [22] as special cases,
and obtains a Galois-type classification for covering extensions with fixed codomain. It would be
interesting to relate this axiomatic Galois theory to an existing comprehension scheme.
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Top. Géom. Diff. Catég. 28 (1987), 197–226.

[7] A. Bruguières, S. Lack, A. Virelizier, Hopf monads on monoidal categories, Adv. Math. 227
(2011), 745–800.
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